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Convergence acceleration of Fourier series by analytical
and numerical application of Poisson’s formula

Simon L Marshall†
Department of Chemistry, University of Natal, Private Bag X01, Scottsville, Pietermaritzburg
3209, South Africa

Received 21 October 1997

Abstract. A form of the Poisson summation formula appropriate for the transformation of
infinite Fourier series is derived and shown to be applicable to slowly converging series arising
in the solution of Laplace’s equation in a rectangular electrochemical cell. The result is a rapidly
convergent Fourier series which is particularly useful in giving the potential close to the electrode
surface. Results obtained from the analytical expression are found to be in close agreement with
those resulting from numerical evaluation of the Fourier integrals (using Simpson’s rule and the
Euler transformation) and direct summation by using Goertzel’s (1958) algorithm.

1. Introduction

The need for efficient and accurate convergence acceleration methods for Fourier series
remains undiminished, despite recent extraordinary advances in computer power. Recently,
Oleksy (1996) gave some striking examples of slowly converging Fourier series in which
direct addition of the terms yields a result with only one or two significant figures. In
this paper we consider the analytical and numerical application of the Poisson summation
formula (PSF) to the evaluation of infinite Fourier series, we demonstrate this by application
to solutions of Laplace’s equation.

Two main problems must be addressed by numerical methods designed for the evaluation
of Fourier series. These are: (1) the evaluation ofN -term finite sums of the series, and (2)
acceleration of the convergence of the sequence of partial sums asN →∞. The evaluation
of finite Fourier sums arises in the approximation not only of the corresponding infinite
series, but also of the Fourier expansion coefficients of a given function. Both of these
tasks have been achieved by application of Clenshaw-type recursion schemes (Clenshaw
1955, Goertzel 1958; for analyses of error propagation in such algorithms see Elliott 1968,
Gentleman 1969, Oliver 1977, Presset al 1992, pp 172–7), the discrete PSF (Lyness 1970),
and fast Fourier transformation (Cooley and Tukey 1965, Dilts 1985).

Most of the published work on the convergence-acceleration of sequences of partial
Fourier sums has been directed towards the construction of rapidly convergent trigonometric
approximations for a given function. The pioneering work on this problem was that
of Lanczos (1966, pp 119–58), who showed that a function could be approximated by
a truncated series of Bernoulli polynomials with the remainder represented as a rapidly
convergent Fourier series. The Lanczos method was subsequently extended and generalized
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by Jones and Hardy (1970), Lyness (1974), Shawet al (1976), Tasche (1979) and most
recently by Baszenskiet al (1995).

Since the Lanczos method and its elaborations require knowledge of the analytical
properties of the function of interest, they are not useful for summing Fourier series of
unknown functions. The first numerical methods developed for this purpose were based
on Ces̀aro summation (Fejér 1904, see also Lanczos 1966, pp 55–61), and construction
of moving averages (Lanczos 1966, pp 61–75). More recently, sequence transformations
designed for slowly converging power series (Wynn 1956, Levin 1973) have been used to
accelerate the convergence of exponential Fourier series (Smith and Ford 1982, Brezinski
and Redivo Zaglia 1991, pp 282–4, Homeier 1993). The most recent developments of series
transformations for Fourier series are due to Oleksy (1996), who described a preliminary
transformation that considerably enhances the performance of the Levin and Homeier
algorithms.

In favourable cases it is also possible to apply classical methods such as Kummer’s
transformation (Knopp 1956, pp 171–2), as in a recent article by Dillmann and Grabitz
(1995) on the summation of a Fourier–Bessel series arising in supersonic potential-flow
theory. This relies on the availability of a simpler series that converges at approximately
the same rate, but which can be summed much more easily, preferably in closed form.
Since such series are often hard to come by, this method is not widely applicable.

Completely analytical transformation methods for slowly converging series, such as
those based on the application of residue theory and the use of the PSF, are generally
very efficient, but suffer from the disadvantage of involving fairly intricate analytical
manipulations. The residue method, which is usually discussed in books on complex analysis
(e.g. Spiegel 1974, Mitrinović and Kěckić 1985), is most useful for Fourier sums of functions
that have finitely many poles in the complex plane. On the other hand, the PSF is applicable
to any convergent series of functions for which the Fourier transform exists, and converts
a slowly converging series to a series of Fourier transforms that can either be summed in
closed form or converges extremely rapidly. Some of the most spectacular applications of
the PSF are to the evaluation of extremely slowly convergent sums of Coulomb potentials
arising in solid-state physics (Wimp 1981, pp 237–42, Haug 1972, pp 249–56) and in
theoretical models of ionic and molecular adsorption (Marshall 1986, Marshall and Conway
1992a, b). In this connection, the PSF invites comparison with methods based on other
representations of the reciprocal distance in terms of Gaussian integrals (Ewald 1921) or
gamma functions (van der Hoff and Benson 1953), both of which have been applied to
problems of interfacial structure by Barlow and Macdonald (1964, 1965) and Macdonald
and Barlow (1966).

Since the alternation of signs in an ionic lattice can be expressed in terms of a complex
exponential, the evaluation of crystal lattice sums can be regarded as the summation of a
particular class of Fourier series. The outstanding performance of the PSF in the evaluation
of lattice sums in turn suggests that the PSF might be useful in the summation of Fourier
series of more general form arising in other physical contexts. Examples of such applications
include the calculation of Green functions arising in waveguide theory (Grzesik 1984), and
in the description of electromagnetic scattering from periodic structures (Jorgenson and
Mittra 1990). These papers are also somewhat germane to our interest in calculating current
and potential distributions in electrochemical cells by solution of Laplace’s equation. In
previous work (Marshall 1991, 1992, Marshall and Wolff 1993, 1998) we evaluated the
resulting Fourier series by application of the Lanczos (1966) method of local smoothing.
The present study was undertaken primarily with the intention of developing a more efficient
way of evaluating Fourier series solutions of Laplace’s equation. We show not only that



Convergence acceleration of Fourier series 2693

the PSF is extremely effective when applied analytically, but also that it is equally effective
when the required Fourier transforms are evaluated numerically.

2. Poisson’s formula for infinite series

The most familiar form of the PSF is
∞∑

n=−∞
g(n) =

∞∑
m=−∞

∫ ∞
−∞

g(u)e2mπ iu du. (1)

If the summand of the left-hand series is replaced byf (n) exp(icn), wherec is a real number
andf is an even function ofn, the integrals in the imaginary parts vanish, resulting in

∞∑
n=−∞

f (n)eicn =
∫ ∞
−∞

f (u) coscu du

+
∞∑
m=1

[ ∫ ∞
−∞

f (u) cos(2mπ + c)u du+
∫ ∞
−∞

f (u) cos(2mπ − c)u du

]
. (2)

To illustrate the application of this result to solutions of Laplace’s equation, we consider
a rectangular electrochemical cell in which one face is maintained at zero potential, the
current density is specified on the opposite face and the remaining boundary surfaces are
insulators. This configuration might be encountered in certain types of plating operations.
In the limiting case where kinetic and mass-transfer resistances are negligible, the current
distribution is associated with a potential function that satisfies Laplace’s equation

∂2V

∂x2
+ ∂

2V

∂y2
= 0 06 x 6 H 06 y 6 L (3)

together with the boundary conditions

∂V

∂y
(x, 0) = f (x) (4)

V (x, L) = 0 (5)

and

∂V

∂x
(0, y) = ∂V

∂x
(H, y) = 0. (6)

As shown in appendix A, the potential within the electrolyte is given by

V (x, y) =
∫ H

0
f (ξ)S(x, y|ξ) dξ (7)

whereS is the potential due to a unit current source on the boundary planey = 0:

S(x, y|ξ) = 1

H
(y − L)− 2

H

∞∑
n=1

sinh nπ
H
(L− y)

nπ
H

coshnπL
H

cos
nπx

H
cos

nπξ

H
. (8)

(We refer toS as the source function to distinguish it from the Green and Neumann functions
that are appropriate for Dirichlet or Neumann boundary conditions.) This Fourier series
converges quite rapidly for values ofy close toL, but for small values ofy, for which it
is of most interest to be able to calculate the potential, convergence becomes very slow.
To calculate the potential in the vicinity of the smaller electrode, it is therefore desirable to
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develop a rapidly convergent form of equation (8). To apply the PSF to this series, we first
observe that the summand is an even function ofn, and that

lim
n→0

{
sinh nπ

H
(L− y)

nπ
H

coshnπL
H

cos
nπx

H
cos

nπξ

H

}
= L− y (9)

from which it follows thatn = 0 corresponds to a removable singularity. We can therefore
write

S(x, y|ξ) = − 1

H

∞∑
n=−∞

sinh nπ
H
(L− y)

nπ
H

coshnπL
H

cos
nπx

H
cos

nπξ

H
(10)

where the summation operator is defined as
∞∑

n=−∞
≡ lim

n→0
+2

∞∑
n=1

. (11)

From equation (2) it is seen that transformation of equation (10) requires evaluation of the
integral ∫ ∞

−∞

sinhau

u coshbu
e(2mπ±c)iu du =

∫ ∞
−∞

sinhau

u coshbu
cos(2mπ ± c)u du (12)

where

a ≡ π

H
(L− y) b ≡ πL

H
c ≡ π

H
(x ± ξ). (13)

As shown in appendix B, the integrals in equation (12) can be evaluated by application of
the residue theorem. The transformed series corresponding to equation (10) is

S(x, y|ξ) = − 2

π

∞∑
k=0

(−1)k sin(k + 1
2)π(1− y

L
)

k + 1
2

· cosh(k + 1
2)
π
L
(H − x) · cosh(k + 1

2)
πξ

L

sinh(k + 1
2)
πH
L

(x > ξ)

= − 2

π

∞∑
k=0

(−1)k sin(k + 1
2)π(1− y

L
)

k + 1
2

· cosh(k + 1
2)
π
L
(H − ξ) · cosh(k + 1

2)
πx
L

sinh(k + 1
2)
πH
L

(x < ξ). (14)

2.1. Numerical application of the Poisson formula

The potential distribution considered here is simple enough that an explicit expression for
the Fourier coefficients can be obtained. In certain problems, such as those involving
calculation of the potential distribution in cells with porous (Marshall 1991) or resistive
electrodes (Marshall 1992, Marshall and Wolff 1993, 1998), the Fourier coefficients are
solutions of simultaneous linear equations, and explicit expressions for them are difficult to
obtain. In this section we see how the PSF can be applied in such situations with direct
numerical evaluation of the Fourier cosine transform integrals that appear on the right-hand
side of equation (2).

The most widely used method for the numerical evaluation of Fourier transforms is
the Cooley–Tukey (1965) fast Fourier transform algorithm. While in principle this can be
applied here as well, it is evident from the calculations presented so far that values of the
integral are usually required for only a few values of the transform (frequency) variable.
It may therefore prove more efficient to use an alternative approach to the evaluation of
improper integrals of oscillatory functions, recommended by Davis and Rabinowitz (1975,
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pp 118–30, 178–80). For the evaluation of a cosine transform, this involves the subdivision
of the integration interval into the subintervals(0, π/2], [π/2, 3π/2], [3π/2, 5π/2], . . .. The
integral can be identified as a series of terms of alternating sign, decreasing in magnitude:∫ ∞

0
f (t) cosxt dt = 1

x

∫ ∞
0
f
(u
x

)
cosu du

= 1

x

[ ∫ π/2

0
f
(u
x

)
cosu du+

∞∑
n=1

∫ (n+ 1
2 )π

(n− 1
2 )π

f
(u
x

)
cosu du

]
≡ U0− U1+ U2− · · · . (15)

The convergence of this series of subintegrals can be accelerated by the application of the
Euler transformation (Scheid 1968, pp 71, 160–1), which involves rearranging terms in
clusters that tend to zero much more rapidly:

U0− U1+ U2− U3+ · · · = 1
2[U0− 1

2(U1− U0)+ 1
4(U2− 2U1+ U0)

− 1
8(U3− 3U2+ 3U1− U0)+ · · ·]. (16)

In practice, best results are achieved if the first few terms (up to about 10) in the series are
added directly, and the Euler transformation is applied to the remainder. The coefficients on
the right-hand side of equation (16) can be generated recursively by constructing a triangular
forward difference table from successive terms in the original series. Each segment in the
integral can obviously be evaluated by any numerical quadrature technique, but Simpson’s
rule and other formulae using equally spaced points have the advantage that they may be
combined with the recursion satisfied by cosnh so that each integral only requires evaluation
of one sine and one cosine. The number of panels into which each subinterval must be
divided depends on how rapidly the function varies with its argument: for functions of
the type considered in this paper, about 30 panels give sufficient accuracy. Failure of the
Euler transformation to converge is a sign that the number of panels might not be sufficient.
The evaluation of the Fourier transforms by this type of method involves the combination
of a quadrature method used to integrate between successive nodes, and a convergence
acceleration algorithm used to sum up these contributions to the total integral. Although we
chose Simpson’s rule and the Euler transformation for the sake of simplicity, many other
combinations are possible. A detailed comparison of the efficiency of these combinations
is, however, beyond the scope of this paper.

3. Numerical results

In this section we consider the evaluation of the series

S(a, b, c) = a + 2
∞∑
n=1

sinhan

n coshbn
coscn (17)

by: (1) numerical (section 3.1) application; (2) analytical (section 3.2) application of the
PSF, and (3) numerical summation of the original series by Goertzel’s method (section 3.3).
The results serve not only to illustrate the power of the transformation but also as a check
on the operation of the three methods. We select the valuesa = 1, b = 1.01 andc = 0.3,
for which the series converges very slowly. Physically, this would correspond to a point
quite close to the planey = 0, on which the current density is specified.
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3.1. Numerical application of the PSF

m = 0

argument= 0.300 0000 integral= 2.945 656[ ∫ ∞
−∞

sinhau

u coshau
coscu du

]
.

Terms in the series as transformed by the PSF.
m = 1

argument= 6.583 185 integral= 7.153 1220E − 05

argument= 5.983 185 integral= 1.817 5979E − 04[ ∫ ∞
−∞

sinhau

u coshbu
cos(2π ± c)u du

]
term= 5.065 8203E − 04.

m = 2

argument= 12.866 37 integral= 7.572 8167E − 08

argument= 12.266 37 integral= −2.433 0802E − 08[ ∫ ∞
−∞

sinhau

u sinhbu
cos(4π ± c)u du

]
term= 1.027 9473E − 07.

m = 3

argument= 19.149 56 integral= −1.688 0222E − 09

argument= 18.549 56 integral= 3.009 3361E − 08[ ∫ ∞
−∞

sinhau

u coshbu
cos(6π ± c)u du

]
term= 5.681 0677E − 08

cosine series= 2.946 162.

We see that the first term in the transformed series (corresponding tom = 0) accounts
for nearly the entire value of the series, and that the higher terms are negligible beyond
m = 2. This is typical of the behaviour of Poisson’s formula for a slowly converging series.

3.2. Analytical application of the Poisson summation formula

The analytical transformation can be evaluated in two forms, as given by equations (B.5)
or (B.6). We use equation (B.5), since this allows us to compare each term in the series of
transforms with the corresponding values obtained by numerical integration.

Argument= 0.300 0000

m = 0 term= 2.945 655[
2
∞∑
k=0

(−1)k sin(k + 1
2)
πa
b

k + 1
2

e−(k+
1
2 )

πc
b

]
argument= 6.583 185

argument= 5.983 185

m = 1 term= 5.067 6987E − 04
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2
∞∑
k=0

(−1)k sin(k + 1
2)
πa
b

k + 1
2

e−(k+
1
2 )

π
b
(2π±c)

]
argument= 12.866 37

argument= 12.266 37

m = 2 term= 2.890 2445E − 08[
2
∞∑
k=0

(−1)k sin(k + 1
2)
πa
b

k + 1
2

e−(k+
1
2 )

π
b
(4π±c)

]
sum= 2.946 162.

The analytically and numerically determined Fourier transforms are seen to be in
satisfactory agreement (to within single-precision machine error), considering the fact that
the summation tolerance was taken to be 0.000 0001 for both the Poisson summation
subroutine and the subroutine that implements the Euler transformation.

3.3. Numerical evaluation of original series

For a Fourier series in which the coefficientsan decrease monotonically with increasing
n, the summation limit required to make the leading term less than some predetermined
numberε can be determined by iterative solution of the equation

log |an| = logε (18)

for n. For the Fourier series considered here andε = 0.000 0001, we find the value of
n to be 929. This results in the estimates 0.973 0814 for the semi-infinite cosine series,
and 2.946 163 for the infinite cosine series. The estimate of the series obtained by direct
addition of the terms (i.e. without the use of Goertzel’s algorithm) is 2.946 164, and the
same result is produced if the sine and cosine factors are generated recursively according
to equations (19):

sin(n+ 1)h = sin(nh) cos(h)+ cos(nh) sin(h)

cos(n+ 1)h = cos(nh) cos(h)− sin(nh) sin(h).
(19)

A comparison of these estimates with those obtained by using the other methods suggests
that for this particular series, accumulation of round-off errors is only a minor problem.

It is to be observed that the transformed series does not always converge more rapidly
than the original series; this depends on the relative values of the parametersa and b. If
a was considerably smaller thanb, as would be the case for a point far removed from the
electrode, the original series would converge quite adequately and the transformation would
not be necessary. It is therefore advisable to select which form of the series to use by
comparing the number of terms required to produce a leading term of magnitude less than
the given summation tolerance. For the transformed series, the ratio of hyperbolic functions
can be written

cosh(k + 1
2)
π
b
(π − c)

sinh(k + 1
2)
π2

b

= e−(k+
1
2 )

πc
b · 1+ e−(2k+1) π(π−c)

b

1− e−(2k+1) π
2
b

→ e−(k+
1
2 )

πc
b (20)

for sufficiently largek. An estimate of the value ofk for which this ratio is less thanε is

k > kmax= −1

2
− b

πc
ln ε. (21)



2698 S L Marshall

Figure 1. Potential due to a unit source atξ = 1 in a rectangular cell withL = 5 andH = 2.

If ε = 0.000 0001, lnε ' −16, so that the required number of terms in the transformed
series is

kmax≈ 16b

πc
. (22)

An estimate for the summation limit of the original series can be derived by observing that
for sufficiently largen, the general term can be approximated thus:

sinhan

n coshbn
≈ ea−b

n
(23)

and the required value ofnmax can be obtained easily by the iterative solution of the equation

a − b − ln nmax= ln ε. (24)

Experience shows that this iteration proceeds very rapidly, with at most four iterations being
required to achieve an error of less than 1.

3.4. Behaviour of the source function

We next consider the potential variation in a rectangular cell withL = 5, H = 2, due to
a unit source atx = 1. This is shown in figure 1 as a function ofx, for different values
of y. The potential becomes progressively more uniform as the grounded boundary plane
y = L is approached. The graphs are quite smooth, and betray no trace of the oscillatory
behaviour of the terms in the original Fourier series and its transformation.

We finally consider the potential in an electrochemical cell consisting of one grounded
electrode and another parallel electrode consisting of a conducting strip of widthx1 and
(vertical) lengthw, across which the current density is assumed to be uniform. The
arrangement of the electrodes is shown in figure 2. With this boundary condition, the
integral of the source function is easily determined, and the dimensionless potential is
found to be

8 ≡ HκV

I
= −J · x1

H
· y − L
H
+ 2J

π2

∞∑
n=1

sinh nπ
H
(L− y)

n2 coshnπL
H

sin
nπx1

H
cos

nπx

H
(25)
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Figure 2. Rectangular electrochemical cell.

Figure 3. Equipotential contours for the cell of figure 2, withx1/H = 0.2 andJ = 1.

whereJ is defined by

J ≡ H 2

wx1
.

The equipotential contours for this cell are shown in figure 3, forx1/H = 0.2 andJ = 1.
Although in the above work we considered a boundary value problem for Laplace’s

equation in which the normal derivative of the function was specified on one part of the
boundary and the value of the function on the other, it is to be observed that a precisely
similar analysis could be applied to other situations, such as those in which either the normal
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derivative or the function is specified over the entire boundary. (Not all of these possibilities
are equally useful in the description of electrochemical cells, however.) Further, the
general approach can be expected to be applicable to conductors of any geometry for which
Laplace’s equation can be solved by separating variables, since in such cases the potential
can always be expanded in terms of orthogonal functions. For example, in cylindrical cells
with current density specified on the lateral surface, the potential is represented as a series
of trigonometric and modified Bessel functions. This may be transformed by the methods
described here into a more rapidly convergent series of exponentials and ordinary Bessel
functions.

In some cases it is also possible to derive the source function in rectangular coordinates
by application of the method of images, and to sum the resulting infinite series of logarithmic
potentials in closed form by using the Weierstrass factorization theorem. The use of the PSF
as described here has the advantage of greater generality, as it can be readily applied in the
construction of rapidly convergent Green functions for problems that cannot be described
physically in terms of images.

A further advantage becomes evident in the consideration of problems involving
nonlinear boundary conditions, such as can be expected to result from appreciable kinetic
resistance at the electrode surface. Such problems in general reduce to the solution of a
nonlinear integral equation for the potential along the electrode, and require iteration. The
representation of the source potential as a rapidly convergent series is clearly of benefit in
these situations. The fact that the general term in the transformed series is a product of
a function ofx and a function of the source pointξ is of greater significance, since this
results in an integral equation with a degenerate kernel. As we will show in a future paper,
this integral equation can be solved analytically in the case of linear polarization, and can
be reduced to a single nonlinear algebraic equation when nonlinear kinetics is assumed. In
contrast, the equivalent logarithmic representation of the source function cannot be integrated
analytically with respect toξ , so that an iterative numerical solution is required even for
linear boundary conditions.

4. Conclusions

In this paper we have demonstrated how the convergence of Fourier series solutions of
Laplace’s equation can be greatly accelerated by the application of the PSF, thereby
providing an accurate and computationally efficient method for the evaluation of such
analytical results. The general strategy involved constructing a rapidly converging
expression for the source function or singularity solution, from which the potential due
to an arbitrary boundary current distribution can be obtained by integration.

While the particular example considered here was simple enough that analytical
expressions could be obtained for the required Fourier transforms, we also showed that the
PSF could be applied equally well if these Fourier transforms were evaluated numerically
by Simpson’s rule in combination with the Euler transformation. The usefulness of the PSF
as a method for accelerating the convergence of Fourier series does not, therefore, require
extensive analytical manipulations.

Appendix A. Potential due to a unit current source

The potential distribution due to a unit current source can be derived by solving the boundary
value problem defined by equations (3)–(6), with the boundary current distribution defined
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by

f (x) = 0 06 x < ξ − δ
2

= Q ξ − δ
2
6 x 6 ξ + δ

2

= 0 ξ + δ
2
< x 6 H. (A.1)

Separation of variables results in a solution of the form

V (x, y) = a0(y − L)−
∞∑
n=1

an
sinh nπ

H
(L− y)

nπ
H

coshnπL
H

cos
nπx

H
. (A.2)

The coefficients can be determined by applying the boundary condition expressed by
equation (4). From the theory of Fourier series and the definition off given by
equation (A.1),

a0 = 1

H

∫ H

0
f (x) dx = Qδ

H
(A.3)

an = 2

H

∫ H

0
f (x) cos

nπx

H
dx = 4Q

nπ
cos

nπξ

H
sin

nπδ

2H
(n = 1, 2, . . .0). (A.4)

The coefficients corresponding to the unit source function are obtained by settingδ = 1/Q
and considering the limit of equations (A.3) and (A.4) asQ→∞:

lim
Q→∞

an = lim
Q→∞

{
4Q

nπ
cos

nπξ

H
sin

nπ

2HQ

}
= 2

H
cos

nπξ

H
. (A.5)

Substitution into equation (A.2) then results in

S(x, y|ξ) = 1

H
(y − L)− 2

H

∞∑
n=1

sinh nπξ
H
(L− y)

nπ
H

coshnπL
H

· cos
nπx

H
cos

nπξ

H
.

Appendix B. Transformation of the source function

Assuming thatc > 0, the integrals in the transformed series can be evaluated by integration
of the function defined by

F(z) ≡ sinhaz

z coshbz
e(2mπ±c)iz (B.1)

around the contour shown in figure B1, where the radius of the semicircular arc is chosen
so as not to coincide with any of the poles of the integrand on the positive imaginary axis.
Application of Cauchy’s theorem results in∮

C

F (z) dz =
∫ π

0
F(R · eiθ )iR · eiθ dθ +

∫ ∞
−∞

F(u) du

= 2π i
∑

resF(z) (B.2)

where the sum is over all poles of the integrand (i.e.(k + 1
2)π i/b) that lie within the

contour. The residue is

lim
z→(k+ 1

2 )
π i
b

{
z− (k + 1

2)
π i
b

coshbz

}
· sinhaz

z
· e(2mπ±c)iz = (−1)k sin(k + 1

2)
πa
b

(k + 1
2)π i

e−(k+
1
2 )

π
b
(2mπ±c)

(B.3)
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Figure B1. Integration contourC referred to in equation (B.2).

where we have used L’Hospital’s rule. As the radius of the semicircular contour increases,
the absolute value of the integrand diminishes exponentially, so that by Jordan’s first lemma
(see, for example, Mitrinović and Kěckić 1985, pp 35–8), the integral around this part of
the contour vanishes. Therefore, in the limit asR→∞, equation (B.2) gives∫ ∞
−∞

sinhau

u coshbu
e(2mπ±c)iu du = 2

∞∑
k=0

(−1)k sin(k + 1
2)
πa
b

k + 1
2

e−(k+
1
2 )

π
b
(2mπ±c). (B.4)

The transformed sum is therefore∫ ∞
−∞

sinhau

u coshbu
coscu du+

∞∑
m=1

[ ∫ ∞
−∞

sinhau

u coshbu
cos(2mπ + c)u du

+
∫ ∞
−∞

sinhau

u coshbu
cos(2mπ − c)u du

]
= 2

∞∑
k=0

(−1)k sin(k + 1
2)
πa
b

k + 1
2

[
e−(k+

1
2 )

πa
b +

∞∑
m=1

×
{

e−(k+
1
2 )

π
b
(2mπ+c) + e−(k+

1
2 )

π
b
(2mπ−c)

}]
(B.5)

where the order of summation has been reversed. This can be further simplified by
expressing the geometric series of exponentials in braces in terms of reciprocal hyperbolic
functions:

a + 2
∞∑
n=1

sinhan

n coshbn
coscn = 2

∞∑
k=0

(−1)k sin(k + 1
2)
πa
b

k + 1
2

· cosh(k + 1
2)
π
b
(π − c)

sinh(k + 1
2)
π2

b

. (B.6)

Since the argument of the hyperbolic sine in the denominator is always larger than the
argument of the hyperbolic sine in the numerator, the summands behave approximately
like exponentials for sufficiently largek, from which it is clear that the transformed series
converges very rapidly. The transformed solution to the original boundary value problem
follows from the appropriate identifications ofa, b and c in terms of the cell geometrical
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parameters, so that

πa

b
= π

L
(L− y) π2

b
= πH

L

π

b
(π − c) = π

L
(H − x ∓ ξ). (B.7)

Since it was assumed thatc > 0, we can expect two different forms of the transformed
series, corresponding to the casesx > ξ andx < ξ . After application of the identity

cosh

(
k = 1

2

)
π

L
(H − x + ξ)+ cosh

(
k + 1

2

)
π

L
(H − x − ξ)

= 2 cosh

(
k + 1

2

)
π

L
(H − x) · cosh

(
k + 1

2

)
πξ

L
(B.8)

the transformed source function is found to be

S(x, y|ξ) = 1

H
(y − L)− 2

H

∞∑
n=1

sinh nπ
H
(L− y)

nπ
H

coshnπL
H

cos
nπx

H
cos

nπξ

H

= − 2

π

∞∑
k=0

(−1)k sin(k + 1
2)π(1− y

L
)

k + 1
2

·cosh(k + 1
2)
π
L
(H − x) · cosh(k + 1

2)
πξ

L

sinh(k + 1
2)
πH
L

(x > ξ)

= − 2

π

∞∑
k=0

(−1)k sin(k + 1
2)π(1− y

L
)

k + 1
2

·cosh(k + 1
2)
π
L
(H − ξ) · cosh(k + 1

2)
πx
L

sinh(k + 1
2)
πH
L

(x < ξ). (B.9)
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